Theoret. chim. Acta (Berl)) 26, 33—42 (1972)
© by Springer-Verlag 1972

Mixed Basis Functions in Molecular Quantum Mechanics
IV. The Linear, Equidistant System of Four Interacting Hydrogen Atoms
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A series of calculations have been carried out for the linear system of four equidistant hydrogen
atoms for an internuclear separation of 1.7 a.u. The configuration interaction technique was used, the
orbital basis consisting of a mixed set of 1s Slater and floating spherical Gaussian functions. The
results obtained are encouraging although the effects of unoptimized non-linear parameters are
noticeable.

Es wurde eine Reihe von Rechnungen fiir ein lineares System von vier #quidistanten Wasser-
stoffatomen (Kernabstand jeweils 1.7 a.u.) durchgefiihrt. Dabei benutzt man die Konfigurations-
wechselwirkungs-Technik, die Orbitalbasis bestand aus einem gemischten Satz von s Slater- und
“floating” sphérischen GauB-Orbitalen. Die Resultate sind ermutigend, obwohl die Effekte der nicht
optimierten nichtlinearen Parameter merklich sind.

Introduction

In the previous papers a series of calculations were reported on 2 and
3 electrons systems, using mixed sets of functions as orbital bases [1-3]. The
results were encouraging and as a further test of the method a series of
calculations have been carried out on the linear, equidistant system of four
hydrogen atoms. Extensive theoretical work on H, has been hindered by the
difficulties involved in the calculation of the three- and four-centre integrals;
so much so that the most sophisticated configuration interaction calculation to
date has only made use of a 1s, 1s" STO basis [4]. Another, less formidable
problem is the large number of configurations which arise, even if only a
moderately small basis were used. Linear H, has been used as a convenient model
for a one-dimensional metallic crystal [5], although as yet it has not been
experimentally observed.

The basis sets used in the current H, calculation consist of a 1s, 1s" STO
basis enlarged by Gaussians, much the same way as for H, and H;, so as to
improve both the SCF and correlation parts of the CI wavefunction [2, 3]. The
calculation of the integrals does not present any fresh problems. The geometry
is taken to be identical to the optimum one calculated by Rubinstein and
Shavitt [4], i.e. linear, equidistant with an internuclear separation of 1.7 a.u.

Calculations and Results

A series of configuration interaction type calculations have been carried
out for the ground state (‘X)) of the linear, equidistant H, system, for a fixed
internuclear distance of 1.7 a.u., in the Born-Oppenheimer approximation. The
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orbital bases used consist of a ls, 15 type set of Slater orbitals, gradually
enlarged by the addition of spherical Gaussian functions arranged spatially so
as to allow for both axial and angular correlation, as well as to improve the
SCF part of the wavefunction.

In order to keep the number of configurations at a reasonably low level an
iterative procedure, very similar to the interative natural orbital method of
Bender and Davidson [6], was introduced and found to function successfully.
As a first approximation a CI wavefunction is constructed containing a limited
number of configurations, the basis consisting of orthonormal symmetry
orbitals. After the computation of the energy expectation value and corresponding
eigenvector the spinless first order reduced density matrix is calculated and
diagonalized resulting in a set of “approximate” natural orbitals; approximate
because they were calculated using a limited CI wavefunction. In the next
calculation the original symmetry orbital basis is replaced by the set of natural
orbitals. The process is then repeated, gradually dropping those configurations
which make too small a contribution to the wavefunction after a given
iteration, until there is no change in the energy and in the natural orbitals.
Hence a self-consistent set of orbitals are determined which are hopefully a good
approximation to the exact natural orbitals. The process is essentially a multi-
configurational SCF technique, although a great deal simpler to implement on the
computer than the more conventional schemes hitherto proposed [7-9].

The Hamiltonian matrix elements between the configurations and the natural
orbitals were calculated by the procedure already used in H; calculations [3].
There are two linearly independent spin eigenfunctions for the singlet state and
four types of configurations, listed in the Appendix together with the repre-
sentation matrices U (P) which were used in these calculations.

The numerical and geometrical details of the various bases used in these
calculations are given in Table 1 and in Figs. 1 and 2. The exponents of the
orbitals were chosen on the basis of the H; results, since H; and H, have very
similar geometries, as were the spatial distributions of Gaussians. No optimization
of the non-linear parameters was undertaken at any stage of the calculations. The
results are summarized in Table 2.

In calculation Ref. [1] from the 1s, 15’ STO’s cight symmetry orbitals were
constructed and orthonormalized by the Schmidt method. The first CI
wavefunction was taken to consist of a dominant single determinantal function

Table 1. The orbital bases used in the H, calculations
(18 = 1s-type Slater orbital, G = Spherical Gaussian function)

Calculation ~ Number Number of Orbital basis and exponents
Ref. of basis configurations
functions
1 8 48 18, =18, =119, 185=1S.=096, 1S, =18, =1.24,
18y =18 =090
2 . 11 55 STO basis as for calculation 1 + G; = G, = G; = 1.00
3 15 69 As for calculation 2, + G, = G5 = Gg= G, =040

4 19 90 As for calculation 2, + G, = Gs == Gy; =040
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Table 3. Natural orbitals expressed in terms of the original basis,

Natural orbital Occupation Coefficient of atomic orbital

and its symmetry number 18, 185 18¢ 1S,
1a, 1.973563 0.304797 0.363791 0.363791 0.304797
2 o, 1.937014 0.269596 -0.007723 -0.007723 —0.269596
50, 0.063171 0.573758 —0.334194 ~0.334194 0.573758
7 o, 0.017150 —0.078872 —0.166240 0.166240 0.078872
30, 0.00380 1.070388 1.952159 1.95215% 1.070388
4 g, 0.003616 4.272493 0.277069 —0.277069 —4.272493
6 o, 0.000620 5.473303 —2.835818 —2.835818 5.473303
9 g, 0.000591 —2.325916 —0.256812 —0.256812 —2.325916

10 g, 0.000274 —3.626281 —1.229978 1.229978 3.626281
8 o, 0.000196 4.672738 —9.311377 9.311377 —4.672738

11 ¢ 0.000006 0.300176 4.57332 4575332 0.300176

@

|1122], plus all the configurations which could be obtained by single and double
substitutions in the above determinant, resulting in a total of 49 configurations.
Orbitals 1 and 2 are simply given as
l=a+b+c+d+ad+b+c+d
2=a4+b—c—d+da+b—~c—-d

where a, b, c,dand &', V', ¢', d’ are the 1s and 15" STO’s centred on nuclei g, b, ¢, d.

The resulting energy was —2.23416a.u., the coefficient of the leading
determinant being 0.945926, all the other coecfficients an order of magnitude
smaller. This seemed a clear indication that the determinant |1 122| was a fair
approximation to the SCF wavefunction, hence the 49 term CI expansion was
also expected to be a reasonable approximation to the full CI wavefunction.
Next, the natural orbitals were used to construct the same set of configurations,
the leading determinant constructed from the two NO’s with the highest
occupation numbers. After 3 iterations the change in the total energy was less than
1073, while the change in NO’s was of the order of 10™#, dropping to less than
1078 after 6 iterations. In the final wavefunction the coefficient of the leading
determinant was 0.977610, while the configurations obtained by single substitu-
tions all had coefficients less than 107 ¢ and could be omitted from the expansion
without a significant increase in the energy. Hence it appears that the iterative
procedure used gives a set of Brueckner type orbitals such that all single
excitations have vanishingly small coefficients [10, 11]. Next, the configuration
wavefunction was extended to include triple and quadruple excitations as well,
resulting in a total of 64 configurations. The iterations were then repeated,
omitting those configurations which had sufficiently small (< 10~ 3) coefficients,
some of them double excitations, finally resulting in a 48 configuration wave-
function. This final wavefunction contains 4 triple and 4 quadruple excitations.
Although these new configurations have zero matrix elements with the leading
determinant, they make a small contribution to the energy (~ 0.38 kcal/mole)
through second order effects. The energy terms calculated by this 48 configuration
wavefunction are given in Table 2.

In calculation Ref. [2] three Gaussians, placed on the molecular axis, as shown
in Fig. 1, were added to the 8 orbital basis. The symmetry orbitals formed from
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and their occupation numbers, from the 11 orbital H, calculation

Coefficient of atomic orbital

18, 1Sy 18¢ 18y Gy G, G;
—0.063644 0.042099 0.042099 —0.063644 0.022785 0.022593 0.022785
0.220148 0.489810 —0.489810 —0.220148 0.030459 0.0 —0.030459
0.302971 —0.268651 —0.268651 0.302971 —0.000002 0.0 —0.000002
1.087010 —1.747110 1.747110 —1.087010 —0.000164 0.0 0.000164
—0.758486 —2.023819 —2.023819 —0.758486 0.000478 0.000018 0.000478
—4.420480 —0.224360 0.224360 4.420480 —0.004076 0.0 0.004076
—6.470700 3.630527 3.630527 6.470700 —0.000004 0.0 —0.000004
1.777873 0.041838 0.041838 1.777873 1.108409 —0.524337 1.108409
3.443406 —0.780154 0.780154 —3.443406 1.648924 0.0 —1.648924
—6.846303 14.24447 14.24447 6.846303 0.000078 0.0 —0.000078
0.165227 —2.970354 —2.970354 0.165227 —1.205726 —2.552824 —1.205726

these new orbitals were Schmidt orthogonalized to the set of natural orbitals from
calculation Ref. [1] and used to construct 37 configurations which were added
to the 48 of the previous calculation. Four iterations were performed, resulting
in a 55 configuration wavefunction, all other configurations found to be negligible.
The natural orbitals and their occupation numbers from this calculation are
presented in Table 3.

In calculation Ref. [3] four off axial Gaussians were added to the orbital
basis, as shown in Fig, 1. As in the analogous H, and H; calculations [2, 3], the
point group of the molecule was taken to be Dg,, hence two e,,, one b;, and
one a;, symmetry orbitals could be formed from these new Gaussians. The a,,
orbital was Schmidt orthogonalized to the NO basis from calculation Ref. [2],
the other three already orthogonal by virtue of their symmetry properties.
69 configurations were found significant enough to be included in the expansion.

The final H, calculation [4] employed two sets of four off-axial Gaussians,
as shown in Fig. 2, in addition to the 11 orbitals from calculation Ref. [2]. The
orthonormal basis, however, contained only 16 molecular orbitals, since orbital 11
from the 11 orbital NO set and the a,, and a,, Gaussian lobe functions were
discarded from the set. The omission of these orbitals was not expected to
increase the energy by more than 0.0002 a.u., this belief based on similar results
for H;. The molecular orbitals, constructed from the off-axial Gaussians, are
listed in Table 4. The final wavefunction contains 90 configurations, these were
selected after a few trial runs testing which new configurations would be
important enough to be used. The occupation numbers of the natural orbitals
resulting from this calculation are listed in Table 5, while in Table 6 the
90 configurations and their coefficients are presented.

The wavefunctions from the other H, calculations are given elsewhere [12]1.

Discussion

The results of calculation Ref. [1] represent a slight improvement (~ 2 kcal/
mole in the total energy) over the results of Rubinstein and Shavitt [4], despite
the small number of configurations in the wavefunction. Clearly, the orbital

1 Also available from G. B. Bacskay on request.
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Table 6. Configurations and their coefficients from the 19 orbital H, calculation

Configuration Coefficient Configuration Cocfficient
Orbitals Type Orbitals Type
Dominant configuration 1 6 2 4 3 —0.005128
1122 1 0.974926 1762 4 4 —0.009776

162 7 3 —0.001704
Double substitutions 1627 4 —0.002517
L1 33 ) 0013578 1 6 28 3 —0.004026

1199 1 —0.009064
11 4 4 { —0.024375

1 11010 1 —0.005558
1155 1 —0.144772

2299 1 —0.010441
1135 2 —0.0182899

2 21010 1 —0.004503
1166 1 —0.007985

19 210 3 —0.007572
1136 2 —0.008532

19 210 4 —0.010026
1156 2 0.007147

L1111 1 —0.014683
1177 t —0.033975

2 21111 1 —0.031975
11 47 2 0.004494

1 21113 3 0.038503
1188 ! —0003537 1 21113 4 0.012605
11 438 2 —0.001029 ‘
1178 2 0.004358
2 23 3 1 —0.019727 Triple substitutions
2 2 4 4 1 —0.009980 7 71 3 2 0.002077
2.2 438 2 0.001990 1 6 2 8 4 —0.003923
2255 1 —0.056799 7715 2 —0.001513
2 2 35 2 0.021110 7 4 1 5 3 —0.003339
2266 1 —0.004344 7415 4 0.003554
2236 2 0.003026 1 51111 2 0.001457
2256 1 —0.011914 i 71113 3 0.001140
22717 2 —0.039707 2 51113 4 ~0.001465
1 11212 1 —0.014631 1 51212 2 0.001464
2 21212 1 —0.031911 2 71212 2 —0.000729
1 21214 3 0.038480 1 71214 3 0.001133
121214 4 0.012622 2 51214 4 —0.001459
1 11313 1 —0.020239 1 51313 2 —0.001912
2 21313 1 —0.013440 2 71313 2 0.000909
1 11414 1 —0.020240 1 514 14 2 —0.001912
2 214 14 ! —0.013443 2 714 14 2 0.000933
L 11515 L —0.001788
2 21515 1 —0.004499 druole substituti
1 11616 1 —0.003188 Quadruple substitutions
2 21616 1 —0.002294 5577 1 0.013058
1 21516 3 0.005738 55 4 4 1 0.003677
1 21516 4 0.001621 7453 4 0.002806
22 4 7 2 0.007694 553 3 1 0.004505
2 2 8 8 1 —0.004610 9 9 55 1 0.002191
227 8 2 —0.007631 1010 5 5 1 0.000986
1324 3 —0.019882 5 51111 1 0.005652
132 4 4 —0.020626 7 71111 1 0.001697
1327 3 0.016904 5 51212 1 0.005765
1327 4 0.021685 5 513 13 1 0.003126
152 4 4 —0.032073 7 71313 1 0.001253
1527 3 ~0.084147 5 514 14 1 0.003120
1527 4 —0.048863 7 714 14 1 0.001298
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exponents used in our calculation are closer to the optimum values. Rubinstein
and Shavitt used the exponents 1.230 and 0.615 for the 1s and 1s' orbitals
respectively, their ratio kept fixed as 2:1 during the optimization procedure,
judged too large by the authors themselves. Furthermore, it appears that the
48 configuration wavefunction may be very close to a good multiconfigurational
SCF wavefunction. Hence, no significant improvément in the energy would be
expected, were the wavefunction of the full CI type, i.e. containing 176 con-
figurations.

The introduction of Gaussians with ¢ symmetry resulted in a relatively small
decrease in the total energy (0.00579 a.u.), most of it appearing as an improved
energy for the leading configuration, i.e. the “SCF part” of the wavefunction.
Compared to the H; results [3] where the analogous energy decrease was
~0.009 a.u., the above change seems too small. Optimization of the exponents
in this case is probably desirable to improve the above results.

The effect of the first set of functions with angular dependence 1s
disappointingly little (calculation Ref. [3]). Obviously the =, functions are
unable to bring about sufficient angular correlation between electrons delocalized
over a molecule which is far too long to be efficiently covered by the simple
n, functions. A smaller orbital exponent should have been used for the off-
axial Gaussians, or more functions with angular dependence. In the final
calculation Ref. [4] we chose the second alternative by the addition of another
set of four off-axial Gaussians. The effects are quite marked, obviously the new
7, orbitals especially are much more successful in allowing for angular
correlation than the earlier ones, which consisted of only two Gaussians.

The H, wavefunctions in these calculations were developed in terms of a
dominant configuration (that is expected to approximate to the SCF wavefunction
in the given basis) and double, triple and quadruple substitutions in the above
single determinant. As pointed out earlier, the absence of single excitations
implies Brueckner self-consistency, since in the case of Hartree-Fock self-
consistency single excitations could still appear, even though Brillouin’s theorem
was satisfied, due to second order effects. Quadruple excitations seem an order
of magnitude more important than triple excitations, this is not unexpected, since
the latter are thought to correspond to unlinked clusters of electrons, or
“simultanecus binary collisions” between electrons in different regions of space
[13].

Unfortunately, no definite new value has been produced for the upper bound
of the energy difference of H, and two H, molecules, apart from the very first
entry in Table 2, ie. 43.08 kcal/mole, resulting from the simplest calculation in
this series. As the basis for the H, calculations was increased the above energy
difference increased also, indicating that the H, basis was becoming progressively
poorer than the comparable H, basis. As pointed out earlier, optimization of the
nonlinear parameters should definitely be carried out to improve these results.

Conclusion

It has been demonstrated again that mixed basis sets could be very useful for
future work on multicentre systems of this kind. The iterative scheme used in this
work has proved very useful too; all the CI expansions were successfully kept
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reasonably short. It would be very interesting and profitable to do some
calculations for H,, using the set of basic integrals computed for the present work,
but employing SCF and multi-configurational SCF techniques. A full CI
calculation would also be worth attempting. Such calculations will be undertaken
shortly.

Acknowledgements. . B. Bacskay gratefully acknowledges the Research Scholarship from the
Commonwealth Scientific and Industrial Research Organisation (Australia).

Appendix

The Representation Matrices U(P), Used in the Evaluation of Matrix Elements
between the 4 Electron Configurations

The four types of configurations with § =0 are defined as
' =(iijj) =iijjl,
®? = (1K) = 1)/ 2{liTjk| + liTk]]}
@3 =(ijkD® =12{ijkl| + ikl +|ijik|+jilk]},
®* = (ijk)* = 1)/ 12{ijkT + kD + i 1K + [ Tk —2)ikj T — 2 Ti K]},

@2 could also be written as (jkii)>.
The U (P) matrices are:

1 )y2 20
2 1 )20
1:U2.14=l/-
U(l)=U(23.14) 212 1 of
0 0 01
0 0 00
0 1120
U(12.34) = U(13.24) =
(1234) = U(13.24) oYz 1 o)
0 0 01
000 0
000 0
U(12)= U(34) = U(14.12.13) = U(13.12.14) =
(12)=U@34=U( )=U( =10 0 1 of
00 0—1

—2 —12 -1 3
U(13) = S22 Y2
ST -1 —1/2 —12 32
Vi Va2 Vi e
0 ~1/2 -1 /3
U24) = _1/1/5 —1/2 —“1/[/5 lﬁ/l/i
@9=\_; —1)/2 12 /312
ViVAV2 VAR e
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0 0 0 0
U(14.13.12) = U(12.13.14) g :1;‘2/5 :wf 11//%[2/5 ,
O V3V V32 1p
00 0 0
U(13.12)= UG4.14) = U2434) = U (2412 = g 8 _(1)/2 —1/(3‘)/2’
00 )32 —1p2
00 0 0
U(13.14) = U(2334) = U(23.12) = U(14.12) = 8 g 0_1/2 l/(3_)/2’
00 —)/32 —12

0 -2 —1 -3
_von_| V2 Sz W2 -2
vay=v@)=| '] VY ARy SR/ ¢
V3 VAV2 -V an
0 0 0 0
a1 -
~1/2  —12 =32 0
VA2 VR ap

U(13.14.12) = U(12.14.13) =

o o O
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